
- Carnegie- Mellon Uniersity,Software Engineering Institute

0-- Models of Software Evolution:
-.- Life Cycle and Process

Curriculum Module SEI-CM-1O-1.0
€ I:~E S -ECTE

JUN 0 31iS9j

j//

//

/ , /

/" /

/ ///

/.7 /

/"/

91-00918
ApprovcX-'for pujbhc release;

91 .005r

Models of Software Evolution:
Life Cycle and Process

SEI Curriculum Module SEI-CM-1O-1.0

October 1987

Walt Scacchi j .

University of Southern California ..

I ty

* Carnegie Mellon University

Software Engineering Institute

This work was sponsored by the U.S. Department of Defense.

Draft For Public Review

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

/JOHN S. HERMAN, Capt, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1987 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Models of Software Evolution:
Life Cycle and Process

Acknowledgements Contents
Priscilla Fowler provided helpful comments and Capsule Description 1
suggestions during the development of this module. Philosophy I
Robert Glass and Marc Kelner also provided helpful
comments in review of this module. Objectives 1

Prerequisite Knowledge 1
Module Content 3

Outline 3
Annotated Outline 3

Glossary 13

Teaching Considerations 15
Bibliography 16

SEI-CM-10-1.0 Draft For Public Review iii

Models of Software Evolution: Life Cycle and Process
Module Revision History

Version 1.0 (October 1987) Draft for public review

iv Draft For Public Review SE I-CM-1 0-1.0

I

Models of Software Evolution:
Life Cycle and Process

Capsule Description tion models and methodologies
techniques for customizing software life-

This module presents an introduction to models of cycle process models to best suit individ-
software system evolution and their role in structur- ual own needs.
ing software development. It includes a review of
traditional software life-cycle models as well as soft-
ware process models that have been recently pro-
posed. It identifies three kinds of alternative models Objectives
of software evolution that focus attention to either
the products, production processes, or production The material covered by this module seeks to convey
settings as the major source of influence. It ex- to students the following objectives:
amines how different software engineering tools arid

D techniques can support life-cycle or process ap- a a basic recognition that software systems
preaches. It also identifies techniques for evaluating can be produced and consumed accord-
the practical utility of a given model of software ing to different systematic models of
evolution for development projects in different kinds software evolution
of organizational settings. * there are alternative ways to organize

software development efforts, and that
the alternatives can focus attention to
software product, production process, or

Philosophy production setting characteristics
* more attention is being focussed to

This module presents the concepts and approaches codifying models of software evolution
for organizing software engineering activities over into computational forms amenable to
the life of software systems. As such, it focuses at- simulation, analysis, and articulation of
tention to: schemes for integrating various software

" what software life-cycle models are and engineering tools and techniques
how they are used * software evolution is itself a process that

" what software process models are and can be prototyped, systematically devel-
how they can be used to model the soft- oped, (re-)configured, measured, refined,
ware life-cycle maintained, and managed

" traditional software life-cycle models
, alternative software evolution models

centered around software product, pro- Prerequisite Knowledge
duction process, or production setting
characteristics The prerequisites for this module depend on the

* how software engineering tools and tech- level of coverage intended for students. For a short
niques fit into the models introduction to life-cycle models of three hours or

" techniques for evaluating software evolu- less, an introduction to computer science and pro-

SEI-CM-10-1.0 Draft For Public Review I

Models of Software Evolution: Ufde Cycle and Process

gramming is sufficient For a more in-depth treat-
ment of traditional and alternative software life-
cycle models of 15-20 hours, then prior experience
as a participant in a software development project is
strongly recommended, as is knowledge of computa-
tional process models (e.g., state machines, aug-
mented transition networks, petri networks). For an
advanced, full course-length examination of soft-
ware life-cycle and process models, then prior cour-
sework in software engineering and experience on a
large software project is strongly recommended, as
is some prior training or experience with experimen-
tal research design methods.

2 Draft For Public Review SEI-CM-1 0-1.0

Models of Software Evolution: Life Cycle and Process

Module Content

Outline process methodologies
2. Research problems and opportunities

I. Introduction VI. Customizable Life-Cycle Process Models
1. Historical origins for system life-cycle models 1. Selecting an Existing Model
2. Software life-cycle activities 2. Customizing your own Model
3. What is a software life-cycle model? 3. Using Process Metrics and Empirical

4. How can software life-cycle models be used? Measurements

5. What is a software process model? 4. Staffing the Life-Cycle Process Modeling

6. Evolutionistic vs. Evolutionary Models Activity

7. The neglected activities of software evolution
II. Traditional Software Life-Cycle Models

1. Classic Software Life-Cycle Annotated Outline
2. Stepwise Refinement and Iterative

Enhancement I. Introduction

3. Incremental Release Software evolution represents the cycle of activities in-

4. Industrial Practices and Military Standards volved in the development, use, and maintenance of
software systems. Software systems come and go

Il. Alternative Life-Cycle Models through a series of passages that account for their in-
1. Software Product Development Models ception, initial development, productive operation, up-

a. Prototyping keep, and retirement from one generation to another.

b. Assembling Reusable Components Material in this section identifies the historical origins
of the software life-cycle concept, the general activities

c. Application Generation included, the similarities and differences between soft-

d. Program Evolution Models ware life-cycle and software process models, and re-
lated issues. This section is therefore appropriate for all

2. Software Production Process Models students of software engineering.
a. Non-Operational Process Models 1. Historical origins for system fife-cycle models
b. Operational Process Models Originally, system life-cycle models emerged in the

3. Software Production Setting Models fields of evolutionary biology and cybernetics. In
a. Software project management process turn, models of software evolution date back to the

models earliest projects developing large software systems

b. Organizational software development models [Benington56, Hosier6l, Royce70]. Overall, the ap-
parent purpose of these software life-cycle models

c. Customer resource life-cycle models was to provide an abstract scheme accounting for the
d. Software technology transfer and transition "natural" or engineered development of software

models systems. Such a scheme could therefore serve as a
basis for planning, organizing, staffing, coordinat-

e. Other models for the organization of system ing, budgeting, and directing software development
production and manufacturing activities.

IV. Where do tools and techniques fit into the 2. Software life-cycle activities
models?
1. Life-Cycle support mechanisms For more than a decade, many descriptions of the

classic software life-cycle (often referred to as "the
2. Process support mechanisms waterfall chart") have appeared (e.g., [Royce70,

V. Evaluating Life-Cycle Models and Boehm76, Distaso80, Scacchi84, Fairley85D and
Methodologies have usually included some version of the following

1. Comparative evaluation of life-cycle and activities:
* System InitiationlAdoption: identifies

SEI-CM-10-1.0 Draft For Public Review 3

Models of Software Evolution: Life Cycle and Process

where systems come from. In most situa- • Software Maintenance: sustaining the use-
tions, new systems replace or supplement ful operation of a system in its host/target
existing processing mechanisms whether environment by providing requested func-
they were previously automated, manual, tional enhancements, repairs, performance
or informal. improvements, and conversions.

* Requirement Analysis and Specfication: 3. What is a software life-cycle model?
identifies the problems a new software
system is supposed to solve. A software life-cycle model is either a descriptive or

" Functional Specification or Prototyping: prescriptive characterization of software evolution.
identifies and potentially formalizes the Typically, it is easier to articulate a prescriptive life-
objects of computation, their attributes and cycle model for how software systems should be de-
relationships, the operations that transform veloped. This is possible since most such models
these objects, the constraints that restrict are intuitive. This means that many software devel-
system behavior, and so forth. opment details can be ignored, glossed over, or

* Partition and Selection (Build vs. Buy vs. generalized. This, of course, should raise concern

Reuse): given requirements and functional for the relative validity and robustness of such life-

specifications, divides the system into cycle models when developing different kinds of ap-

managable pieces that denote logical sub- plication systems in different kinds of development
sysem sp e thentins heter l s- settings. Descriptive life-cycle models, on the other
systems, then determines whether new, ex- hand, characterize how software systems are ac-isting, or reusable software systems cor-talydvop.Asuchearlssom n
respond to the needed pieces. tually developed. As such, they are less common

and more difficult to articulate for an obvious
" Architectural Configuration Specification: reason: one must observe or collect data throughout

defines the interconnection and resource the development of a software system, a period of
interfaces between system modules in elapsed time usually measured in years. Also,
ways suitable for their detailed design and descriptive models are specific to the systems ob-
overall configuration management. served, and only generalizable through systematic

* Detailed Component Design Specification: analysis. Therefore, this suggests the prescriptive
defines the procedural methods through software life-cycle models will dominate attention
which each module's data resources are until a sufficient base of observational data is avail-
transformed from required inputs to pro- able to articulate empirically grounded descriptive
vided outputs. life-cycle models.

" Component Implementation and 4. How can software life-cycle models be used?
Debugging: codifies the preceding speci-
fications into operational source code im- Some of the ways these models can be used include:
plementations and validates their basic op- * as a means to organize, plan, staff, budget,
eration. schedule and manage software project

* Software Integration and Testing: affirms work over organizational time, space, and
and sustains the overall integrity of the computing environments.
software system architectural configura- 9 as prescriptive outlines for what docu-
tion through verifying the consistency and ments to produce for delivery to client.
completeness of implemented modules, * as a basis for determining what software
verifying the resource interfaces and inter- engineering tools and methodologies will
connections against their specifications, be most appropriate to support different
and validating the performance of the sys- le ctivites
tem and subsystems against their require- life-cycle activities.
ments. * as frameworks for analyzing or estimating

" Documentation Revision and System patterns of resource allocation and con-

Delivery: packaging and rationalizing sumption during the software life-cycle

recorded system development description [Boehm8la].

into systematic documents and user * as comparative descriptive or prescriptive
guides, all in a form suitable for dissemi- accounts for how software systems come
nation and system support. to be the way they are.

" Training and Use: providing system users 9 as a basis for conducting empirical studies
with instructional aids and guidance for to determine what affects software produc-
understanding the system's capabilities tivity, cost, and overall quality.
and limits in order to effectively use the 5. What is a software process model?
system.

4 Draft For Public Review SEI-CM-1 0-1.0

Models of Software Evokition: Life Cycle and Process

A software process model often represents a net- often intuitive and useful as organizing frameworks
worked sequence of activities, objects, transfor- for managing and tooling software development ef-
mations, and events that embody strategies for ac- forts. But they are poor predictors of why certain
complishing software evolution [Potts84, Wileden86, changes are made to a system, and why systems
Dowson86]. Such models can be used to develop evolve in similar or different ways [Bandifallah87].
more precise and formalized descriptions of soft- Evolutionary models are concerned less with the
ware life-cycle activities. Their power emerges stage of development, and more with the techno-
from their use of a sufficiently rich notation, syntax, logical mechanisms and organizational processes
or semantics, often suitable for computational proc- that guide the emergence of a system over space and
essing. time. As such, it should become apparent that the

traditional models are evolutionistic, while most of
Software process networks can be viewed as the alternative models are evolutionary.
representing methodical task chains. Task chains
structure the transformation of computational en- 7. The neglected activities of software evolutiontities through a passage of sequence of actions thatdetie ehrouac passgeofsequ f actians tt Three activities critical to the overall evolution ofidealited pah profwha actionty.ask h n ac - software systems are maintenance, technology trans-plished, and in what order. For example, a task fer, and evaluation However, these activities are of-chain for the activity of object-oriented software de- ten inadequately addressed in most models of soft-might include the following task actions: ware evolution. Thus, any model of software evolu-si g tion should be examined to see to what extent it

" Develop an informal narrative specifica- addresses these activities.
tion of the system.

* Identify the objects and their attributes. Software maintenance often seems to be described
" Identify the operations on the objects. as just another activity in the evolution of software.However, many studies indicate that software sys-
* Identify the interfaces between objects, at- tems spend most of their useful life in this activity

tributes, or operations. (Boehm76, Boehm8la]. A reasonable examination
* Implement the operations. of the activity indicates that maintenance represents

Task chains join or split into other task chains result- ongoing incremental iterations through the life-cycle

ing in an overall production lattice. The production activities that precede it [Basili75]. These iterations
lattice represents the "organizational system" that are an effective way to incorporate new functional
transforms raw computational, cognitive, and other enhancements, remove errors, restructure code, im-
organizational resources into assembled, integrated prove system performance, or convert a system to
software systems. The production lattice therefore run in another environment. Subsequently, software
represents the structure of how a software system is maintenance activities represent micro-level pas-
developed, used, and maintained. However, tasks sages through the life-cycle. However, it is also
chains and actions are never sufficiently described to clear that many other technical and organizational
anticipate all possible contingencies or problems that circumstances profoundly shape the evolution of a

can emerge in the real-world of software develop- softwar system and its host environment
ment. Thus any software production lattice will in [Lehman86a, Bendifallah87]. Thus, every software
some way realize only an approximate or incomplete life-cycle or process model should be closely ex-
description of software development. As such, amined to see to what extent its accounts for whatarticulation work will be performed when a task happens to a software system during most of its sus-

chain is inadequate or breaks down. The articulation tained operation.
work then represents a non-deterministic sequence Concerns for system installation and support need to
of actions taken to restore progress on the disarticu- be addressed during the earliest stages of software
lated task chain, or else to shift the flow of produc- evolution. These concerns eventually become the
tive work onto some other task chain [Bendifaliah87]. basis for determining the success or failure of soft-

6. Evolutionistic vs. Evolutionary Models ware system use and maintenance activities. Early
and sustained involvement of users in system devel-

Every model of software evolution makes certain as- opment is one of the most direct ways to affect a
sumptions about the meaning of evolution. In one successful software technology transfer. Failure to
such analysis of these assumptions, two distinct involve users is one of the most common reasons
views are apparent: evolutionistic models focus on why system use and maintenance is troublesome.
the direction of change in terms of progress through Thus, any model of software evolution can be evalu-
a series of stages eventually leading to some final ated according to the extent that it accommodates
stage; evolutionary models, on the other hand, focus activities or mechanisms that encourage system de-
attention to the mechanisms and processes that velopers and users to cooperate.
change systems [King84]. Evolutionistic models are

SEI-CM-10-1.0 Draft For Public Review 5

Models of Software Evolution: Life C' cle and Process

Evaluating the evolution ot software systems helps ing to structure and manage large software devel-
determine which development activities or actions opment projects in organizational settings.
could be made moe effective. Many models of soft-
ware evolution do not address how system devel- 2. Stepwise Refinement and Iterative
opers (or users) should evaluate their practices to Enhancement
deter' ne which of their activities could be ia- This model advocates developing software systems
proved or restructured. Technical reviews and soft- through ongoing refinement and enhancement of
ware inspections often focus attention to how to im- high-level system specifications into source code
prove the quality of the software products being de- components (Wirth7l, Basili5J. These models have
veloped, while the organizational and technological been most effective in helping to teach individual
processes leading to these products receive less a programmers how to organize their software devel-
tention. Evaluating development activities also im- opment work. Many interpretations of the classic
plies that both the analytical skills and tools are software life cycle subsume this approach within
available to a development group. Thus, models of their design and implementations.
software evolution can also be scrutinized to deter-
mine to what extent they incorporate or structure 3. Incremental Release
development activities in ways that provide devel-
opers with the means to evaluate the effectiveness of This model advocates developing systems by first
the engineering practices. providing essential operating functions, then provid-

ing system users with improved and more capable
Finally, one important purpose of evaluating local versions of a system at regular intervals [Tuy84].
practices for software evolution is to identify oppor- This model combines the classic software life-cycle
tunities where new technologies can be inserted. In with iterative enhancement at the level of system
many situations, new software engineering tools, development organization. It also provides a way to
techniques, or management strategies are introduced periodically distribute software maintenance updates
during the middle of a system development effort. and services to dispersed user communities. This in
How do such introductions impact existing prac- turn accommodates the provision of standard soft-
tices? What consequences do such introductions ware maintenance contracts. It is therefore a popular
have on the maintainability of systems currently in model of software evolution used by commercial
use or in development? Software maintenance, tech- firms.
nology transfer, and process evaluation are each cri-
tical to the effective evolution of software systems, 4. Industrial Practices and Military Standards
as is their effect on each other. Thus, they should be Industrial firms often adopt some variation of the
treated collectively, and in turn, models of software classic model as the basis of the software develop-
evolution can be reviewed in terms of how well they ment practice [Royce70, Boehm76, Distaso8O.
address this collective. Scacchi84, Scacchi86a]. Many government contrac-

H. Traditional Software Life-Cycle Models tors organize their activities according to military
standard life-cycle models such as that embodied in

These models of software evolution have been with us MIL-STD-2167 [MIL-STD-21671. Such standards
in some cases since the earliest days of software engi- outline not only some variation of the classic life-
neering. The classic software life-cycle (or "waterfall" cycle activities, but they also the content of docu-
model) and stepwise refinement are widely instantiated ments required by clients who procure either soft-
in just about all books on modem programming prac- ware systems or complex mechanisms with em-
tice and software engineering. The incremental release bedded software systems. These standards are also
model is closely related to industrial practices where it intended to be compatible with provision of software
most often occurs. Military standards have also reified quality assurance, configuration management, and
certain forms of the classic life-cycle model into re- independent verification and validation services in a
quired practice for government contractors. Since of multi-contractor development projecL More recent
these life-cycle models have been in use for some time, progress in industrial practice appears in
we refer to them as the traditional models, and identify [HumphreyB5, Radice85, Yacobellis84].
each below. III. Alternative Life-Cycle Models
1. Classic Software Life-Cycle There are at least three alternative sets of models of

The classic software life-cycle is often represented software evolution. These models are alternatives to
as a simple waterfall software phase model, where the traditional software life-cycle models. These three
software evolution proceeds through an orderly se- sets focus attention on either the products, production
quence of transitions from one phase to the next in processes, or production settings associated with soft-
linear order. Such models resemble finite state ma- ware evolution. Since these models are not in wide-
chine descriptions of software evolution. However, spread practice, discussion of them is appropriate at an
such models have been perhaps most useful in help- intermediate level of coursework, while in-depth re-

6 Draft For Public Review SEI-CM-10-1.0

Models of Software Evoklion: Life Cycle and Process

view is appropriate at an advanced level. However, all small-grain components. However, the use/reuse
students of software engineering should have an over- of small-grain components in and of themselves
view of models of program evolution and software does not constitute a distinct approach to software
technology transfer. evolution. Other approaches attempt to utilize

components resembling functionally complete
1. Software Product Development Models systems or subsystems (e.g., user interface man-

Software product development models represent an agement system): large-grain components. The
evolutionary extension to the traditional software use/reuse of large-grain components does appear
life-cycle models. The extensions arose due to the to be an alternative approach to developing soft-
availability of new software development technol- ware systems, and thus is an area of active re-
ogies such as software prototyping languages and search. There are probably many ways to utilize
environments, reusable software, and application reusable software components in evolving soft-
generators. Each of these technologies seeks to en- ware systems. However, cited studies suggest
able the creation of executable software implemen- their initial use during architectural or component
tations either earlier in the life-cycle, or more design specification as a way to speed implemen-
rapidly but with reduced functionality. Discussion of tation. They might also be used for prototyping
these models is most appropriate when such technol- purposes if a suitable software prototyping tech-
ogies are available for use or experimentation. nology is available.

a. Prototyping c. Application Generation

Prototyping is a technique for providing a reduced Application generation is an approach to software
functionality version of a software system early in development similar to reuse of parameterized,
its development [Balzer82, Boehm84, Budde84, large-grain software components. Such compo-
Hekmatpour87]. Prototyping technologies usually nents are specialized to an application domain via
accept some form of software functional specifi- a formalized specification language used as input
cations as input, which in turn are either simu- to the application generator. Common examples
lated, analyzed, or directly executed. As such, provide standardized interfaces to database man-
these technologies allow software design activi- agement system applications, and include
ties to be initially skipped or glossed over. In generators for reports, graphics, user interfaces,
turn, these technologies can allow developers to and application-specific editors. Application
rapidly construct early or primitive versions of generators give rise to a model of software evolu-
software systems that users can evaluate. These tion whereby software design activities are either
user evaluations can then be incorporated as feed- almost eliminated, or reduced to a database de-
back to refine the emerging system specifications sign problem. Similarly, users of application
and designs. Further, depending on the prototyp- generators are usually expected to provide input
ing technology, the complete working system can specifications and application maintenance ser-
be developed through a continually process of vices. These capabilities are possible since the
revising/refining the input specifications. This generators can usually only produce software sys-
has the advantage of always providing a working tems specific to a small number of similar appli-
version of the developing system, while redefin- cation domains, and usually those that depend on
ing software design and testing activities to input a database management system [Horowitz85].
specification refinement and execution. Alter- d. Program Evolution Models
natively, other prototyping approaches are best
suited for developing "throwaway" In contrast to the preceding three models, Lehman
(demonstration only) systems, or for building and Belady sought to develop a descriptive model
prototypes by reusing part/all of some existing of software product evolution. They conducted a
software systems. Two collections of papers on series of studies of the evolution of large software
the subject can be found in [Sen82, Budde84]. systems at IBM during the 1970's [Lehman85].

Bsed on their investigations, they identify five
b. Assembling Reusable Components properties that characterize the evolution of large

The basic approach of reusablity is to configure software systems. These are:
and specialize pre-existing software components 1. Continuing change: a large software
into viable application systems [Biggerstaff 84, system undergoes continuing change
Neighbors84, Goguen86]. However, the or becomes progressively less useful
granularity of the components (i.e., size, com- 2. Increasing complexity: as a software
plexity, functional capability) vary greatly across system evolves, its complexity in-
different approaches. Most approaches attempt to creases unless work is done to main-
utilize components similar to common data struc- tan or reduce it
tures with algorithms for their manipulation:

SEI-CM-10-1.0 Draft For Public Review 7

Models of Software Evolution: Life Cycle and Process

3. Fundamenal law of program ware systems are developed through an on-
evolution: program evolution, pro- going series of transformations of problem
gramming process, and global meas- statements into abstract specifications into con-
ures of project and system attributes crete implementations [WIrth7l, Basili75,
are statistically self-regulating with Bauer76, Balzer81]. Lehman, Stenning, and
determinable trends and invariances Turski, for example, propose a scheme

4. Invariant work rate: the rate of global whereby there is no traditional life-cycle nor
activity in a large software project is separate stages, but instead an ongoing series
statistically invariant of reifying. transformations of abstract specifi-

cations into more concrete programs
5. Incremental growth limit, during the [Lehman84a, Lehman84b]. In this sense then,active life of a large program, the vol- problem statements and software systems can

ume of modifications made to succes- emetsomewhatntogethereandsthus can
siverelase isstaistiall inarint.emerge somewhat together, and thus can con-

sive releases is statistically invafiant, tinue to co-evolve.
However, it is important to observe that these are
global properties of large software systems, not Continuous transformation models also accom-
causal mechanisms of software evolution. modate the interests of software formalists who

seek the precise statement of formal properties
2. Software Production Process Models of software system specifications. Accord-

There are two kinds of software production process ingly, the specified formalisms can be math-
models: non-operational and operational. Both are ematically transformed into properties that a
software process models. The difference between source implementation should satisfy. The po-
the two primarily stems from the fact that the opera- tential for automating such models is apparent,
tional models can be viewed as programs: programs but it still the subject of ongoing research (and
that implement a particular regimen of software en- addressed below).
gineering and evolution. Non-operational models, on (iii) Miscellaneous Process Models
the other hand, denote conceptual approaches that
have not yet been sufficiently articulated in a form Many variations of the non-operational life-
suitable for codification. cycle and process models have been proposed,

and appear in the proceedings of the three soft-
a. Non-Operational Process Models ware process workshops [Potts84, Wileden86,

(i) The Spiral Model Dowson86]. These include fully interconnected
life-cycle models which accommodate transi-

The spiral model of software development and tions between any two phases subject to satis-
evolution represents a risk-driven approach to faction of their pre- and post-conditions, as
software process analysis and structuring well as compound variations on the traditional
[Boehm86]. The approach incorporates ele- life cycle and continuous transformation
ments of specification-driven and prototype- models. However, the cited reports generally
driven process methods. It does so by indicate that in general most software process
representing iterative development cycles in a models are analytical or theoretical, so little ex-
spiral manner, with inner cycles denoting early perience with these models has been reported.
analysis and prototyping, and outer cycles
denoting the classic system life-cycle. The b. Operational Process Models
radial dimension denotes cumulative develop-
ment costs, and the angular dimension denotes (i) Operational specifications for rapid
progress made in accomplishing each develop- prototyping
ment spiral. Risk analysis, which seeks to iden- The operational approach to software develop-
tify situations which might cause a develop- ment assumes the existence of a formal specifi-
ment effort to fail or go over budget/schedule, cation language and processing environment
occurs during each spiral cycle. In each cycle, [Bauer76, Balzer82, Balzer83a, Zave84. Spec-
risk analysis represents roughly the same ifications in the language are "coded" and
amount of angular displacement, while the dis- when possible constitute a functional prototype
placed sweep volume denotes increasing levels of the specified system. When such specifica-
of effort required for risk, analysis. System de- tions can be developed and processed in-
velopment in this model therefore spirals out crementally, then the resulting system
only so far as needed according to the risk that prototypes can be refined and evolved into
must be managed. functionally more complete systems, and are

(ii) Continuous Transformation Models always operational during their development.
Variations within this approach represent either

These models propose a process whereby soft- efforts where the prototype is the end sought,

8 Draft For Public Review SEI-CM-1 0-1.0

Models of Software Evolution: Life Cycle and Process

or where specified prototypes are kept opera- marked optional, and thus is perhaps most appro-
tioal but refined into a complete system. priate at an advanced level.

(ii) Software process automation and a. Software project management process
programming models

Process automation and programming are con- In parallel to (or on top of) a software develop-
cerned with developing "formal" specifications ment effort, there is normally a management su-
of how a (family of) software system(s) should perstructure to configure the effort. This structure
be developed. Such specifications therefore also represents a cycle of activities for which
should provide an account for an organization project managers assume the responsibility. The
and description of the various software produc- activities include project planning, budgeting and
tion task chains, how they interrelate, when controlling resources, staffing, dividing and coor-
then can iterate, etc. as well as what software dinating staff, scheduling deliverables, directing
tools to use to support different tasks, and how and evaluating (measuring) progress, and inter-
these tools should be used [Hoffnagel85, vening to resolve conflicts, breakdowns, or
Huseth86, Osterweil87]. See [Lehman87] and resource distribution anomalies [Thayer8l,
[Curtis87] for provocative reviews of the poten- Scacchi84, Kedzierski84, Radice85,
tial and limitations of current proposals for Humphrey85].
software process automation and programming. b. Organizational software development models

(iii) Knowledge-based software automation Software development projects are plagued with

This model attempts to take process automa- many recurring organizational dilemmas which
tion to its limits by assuming that process spec- can slow progress. Experienced managers recog-
ifications can be used directly to develop soft- nize these dilemmas and develop strategies for
ware systems, and to configure development mitigating or resolving their adverse effects. Such
environments to support the production tasks at strategies therefore form an informal model for
hand. The common approach is to seek to auto- how to manage software development throughout
mate the continuous transformation model. In its life-cycle. See [Kling8O, Kidder81, Kling82,
turn, this implies an automated environment Scacchi84, Gasser86, Curtis87] as well as
capable of recording the formalized develop- [Liker86].
ment of operational specifications, successively c. Customer resource life-cycle models
transforming and refining these specifications
into an implemented system, assimilating With the help of information (i.e., software) sys-
maintenance requests by inserting the tems, a company can become more competitive in
new/enhanced specifications into the current all phases of its customer relationships [Ives84,
development derivation, then replaying the Wiseman85]. The customer resource life-cycle
revised development toward implementation (CRLC) model is claimed to make it possible for
[Bauer76, Balzer83b, BaIzer85J. However, cur- such companies to determine when opportunities
rent progress has been limited to demonstrating exist for strategic applications. Such applications
such mechanisms and specifications to change a firm's product line or the way a firm
narrowly-defined software coding, mainte- competes in its industry. The CRLC model also
nance, project communication and manage- indicates what specific application systems should
ment tasks [Balzer83b, Balzer85, Cheatham86, be developed.
Polak86, Kedzierski84, SathiS5, Sathi86].

The CRLC model is based on the following
3. Software Production Setting Models premises: the products that an organization pro-

In contrast to product or production process models vides to its customers are, from the customer's
of software evolution, production setting models viewpoint, supporting resources. A customer then
draw attention to organizational and management goes through a cycle of resource definition, adop-
strategies for developing and evolving software sys- tion, implementation and use. This can require a
tems. With rare exception, such models are non- substantial investment in time, effort, and man-
operational. As such, the focus is less technological agement attention. But if the supplier organization
and more strategic. But it should become clear that can assist the customer in managing this resource
such strategies do affect what software products get life-cycle, the supplier may then be able to dif-
developed and how software production processes ferentiate itself from its competitors via enhanced
will be organized. customer service or direct cost savings. Thus, the

supplier organization should seek to develop and
Also, note that the last entry in this section on other apply software systems that support the
models of system production and manufacturing is customer's resource life-cycle. [Ives84] and

SEI-CM-I 0-1.0 Draft For Public Review 9

Models of Software Evolution: Life Cycle and Process

[Wisoman85] describe two approaches for ar- have far greater affect in determining the success-
ticulating CRLC models and identifying srategic ful use and evolution of a software innovation,
software system applications to support them. than the innovation's technical merit. However,

software technology trafer is an area requiring
The purpose of examining such models is to ob- much more research.
serve that forces and opportunities in a
marketplace such as customer relationships, cor- e. Other models for the organization of system
porate strategy, and competitive advantage can production and manufacturing
help determine the evolution of certain kinds of
software systems. (This section is optional) What other kinds of

models of software production might be possible?
d. Software technology transfer and transition If we look to see how other technological systems

models are developed, we find the following sort ofmodels for system production:
The software innovation life-cycle circumscribes
the technological and organizational passage of •Ad-hoc problem solving, tinkering, and

software system technologies. This life-cycle articulation work: the weakest model
therefore includes the activities that represent the of production is when people approach
transfer and transition of a software system from a development effort with little or no
its producers to its consumers. This life-cycle preparation or task chain plan at hand,
includes the following activities [Redwine85, and thus rely solely upon their skill, ad
Scacchi86b: hoc tools, or the loosely coordinated ef-

forts of others get them through. It is
* Invention and prototyping: software re- situation specific, and driven by accom-

search and exploratory prototyping modations to local circumstances. It is
* Product development- the software de- therefore perhaps the most widely prac-

velopment life-cycle ticed form of production and system
* D musion: packaging and marketing evolution.

systems in a form suitable for wide- o Group project: software life-cycle and
spread dissemination and use process efforts are usually realized one

" Adoption and Acquisition: deciding to at a time, with every system being
commit organizational resources to get treated somewhat uniquely. Thus such
new systems installed efforts are often organized as group

" Implementation: actions performed to project
assimilate newly acquired systems into * Custom job shop: job shops take on
existing work and computing arrange- only particular kinds of group project
ments work, due to more substantial invest-

* Routinization: using implemented sys- ment in tooling and production

tems in ways that seem inevitable and skil/technique refinement.

part of standard procedures * Batched production: provides the cus-

* Evolution: sustaining the equilibrium of tomization of job shops but for a larger

routine use for systems embedded in production volume. Subsystems in de-

community of organizational settings velopment are configured on jigs thatcommnityof rganzatinalsettngscan either be brought to workers and
through enhancements, restructuring, production tools, or that tools and

debugging, conversions, and replace- workers can be brought to the

ments with newer systems. workes ca sebstet

Available research indicates that progress through Porkpie: or subsystems.

the software innovation life-cycle can take 7-20 Pipeline: when system development re-

years for major software technologies (e.g., Unix, quires the customization of job shops or

expert systems, programming environments, Ada) production, while at the same time al-
[RedwineS5]. Thus, moving a software develop- lowing for concurent development se-
ment organization to a new technology can take a quwn of suyste
long time and great effort. Research also indicates quences of subsystems.
that most software innovations (small or large) * Flexible manufacturing systems., seek to
fail to get properly implemented, and thus result provide the customization capabilities
in wasted effort and resources [Scacchi86b]. The of job shops, while relying upon ad-
failure here is generally not technical, but instead vanced automation to allow economies
primarily organizational. Thus, organizational cir- of scale, task standardization, and
cumstances and the people who animate them delivery of workpieces of transfers lines

realized through rapidly reconfigurable

10 Draft For Public Review SEI-CM-1 0-1.0

Models of Software Evolution: Life Cycle and Process

workstation tooling and process pro- 2. Process support mechanisms
graminming. Recent proposals for
"software factories" have adopted a var- There are at least three kinds of software process
iation of this model [Scacchi87]. support mechanisms:

" Transfer (assembly) lines- when raw in- * Process articulation technologies denote
put resources or semi-finished sub- the prototyping, reusable software, and ap-
assemblies can be moved through a net- plication generator languages and environ-
work of single action workcells, then ments for rapidly developing new software
transfer lines are appropriate., systems.

" Continuous process control: when the * Process measurement and analysis

rate or volume of uniform raw input technologies denote the questionnaire, sur-

resources and finished output products vey, or performance monitoring instru-
can be made continuous and automat- ments used to collect quantifiable data on

ically variable, then a continuous proc- the evolving characteristics of software

ess control form of production is appro- products and processes. Collected data can

priate. Oil refining is an example of in tun be analyzed with statistical tools to

such a process, with crude oil from determine descriptive and inferential
wells as input, and petroleum products relationships within the data. These

(gasoline, kerosene, multi-grade motor relationships can then be interpreted as in-

oil) as outputs. Whether software can be dicators for where to make changes in cur-
produced in such a manner is unlikely at rent practices through a restructuring of

this time. work/resources, or through the introduc-
tion of new software engineering technol-

IV. Where do tools and techniques fit into the ogies. Such measurement and analysis
models? technologies can therefore accommodate

process refinements that improve its over-
Given the diversity of software life-cycle and process all performance and product quality.
models, where do software engineering tools and tech-

_niques fit into the picture? This section briefly identi- * Computational process models denote for-

fies some of the places where different software engi- malized descriptions of software develop-
W neering technologies can be matched to certain models. ment activities in a form suitable for auto-

Another way to look at this section might be to look mated processing. Such models are envi-

instead at what software engineering technologies sioned to eventually be strongly coupled to

might be available in an individual setting, then seek a available software engineering tools and

model of software evolution that is compatible. techniques in ways that allow their config-
uration and use to be programmed. How-

l. Life-Cycle support mechanisms ever, at present, such models serve to help
articulate more precise descriptions for

Most of the traditional life-cycle models are decom- how to conduct different software engi-
posed as stages. These stages then provide bound- neering activities.
aries whereby software engineering technologies are
targeted. Thus, we find engineering techniques or V. Evaluating Life-Cycle Models and
methods (e.g., Yourdon structured design, TRW's Methodologies
software requirements engineering methodology
(SREM)) being targeted to support different life- Given the diversity of software life-cycle and process
cycle stages, and tools (e.g., TRW's requirements models, how do we decide which if any is best, or
engineering and verification system (REVS)) tar- should be the one to follow? Answering this question
geted to support the associated activities. However, requires further research. Therefore, material in this
there are very few, if any, package of tools and tech- section is perhaps most appropriate at an advanced
niques that purport to provide integrated support for level.
engineering software systems throughout their life- 1. Comparative evaluation of life-cycle and
cycle [Scacchi87]. Perhaps this is a shortcoming of process methodologies
the traditional models, perhaps indicative that the
integration required is too substantial to justify its As noted in Section I, descriptive life-cycle models
expected costs or benefits, or prehaps the necessary require the empirical study of software evolution
technology is still in its infancy. Thus, at present, products and processes. Therefore, how should such. we are more likely to find ad-hoc or loose collec- a study be designed to realize useful, generalizable
tions of software engineering tools and techniques results?
that provide partial support for software life-cycle
engineering. Basically, empirical studies of actual software life-

cycles or processes should ultimately lead to models

SEI-CM-10-1.0 Draft For Public Review 11

Models of Software Evolution: Life Cycle and Process

of evolution with testable predictions [Curtis8O, native models of software evolution. Comparative -
Basili86]. Such models in turn must therefore be ap- research design methods, data sampling, collection,
plicable across different sets of comparable data, and analysis are all critical topics that require careful
This means that such studies must use measurements articulation and scrutiny [Basili86]. And each of the
that are reliable, valid, and stable. Reliability refers alternative models, whether focusing attention to ei-
to the extent that the measures are accurate and ther software products, production processes, pro-
repeatable. Validity indicates whether the measured duction settings, or their combination can ideally
values of process variables are in fact correct. Stabil- draw upon descriptive studies as the basis of their
ity denotes that the instrument measures one or more prescriptions. Thus, we are at a point where empiri-
process variables in a consistent manner across dif- cal studies of software life-cycle or process models
ferent data sets [Curtis8O]. (or their components) are needed, and likely to bevery influential if performed systematically and
However, most statistical instruments are geared for rigorously.

snapshot studies where certain variables can be con-
trolled, while others are independent. Lehman and Therefore, for advanced level students, it is appro-
Belady use such instruments in their evaluation of priate to devote some attention to the problem of
large software system attributes [Lehman85]. Their designing a set of experiments intended to substan-
study uses data collected over periodic intervals for tiate or refute a model of software evolution, where
a sample of large software systems over a number of critical attention should then be devoted to evalu-
years. However, their results only make strong ating the quality and practicality (i.e., time, effort,
predictions about global program evolution and resources required) of the proposed research.
dynamics. That is, they cannot predict what will
happen at different life-cycle stages, in different cir- VI. Customizable Life-Cycle Process Models
cumstances, or for different kinds of software sys- Given the emerging plethora of models of software
tems. To make such predictions requires a different evolution, how does one choose which model to put
kind of study. into practice? This will be a recurring question in the

[vandenBosch82] and [Curtis87] propose two alter- absence of empirical support for the value of one

native approaches to studying software evolution, model over others. We can choose whether to select an
Both rely upon long-term field studies of a sample existing model, or else to develop a custom model.
of software efforts in different organizational set- Either way, the purpose of having a model is to use it
tings. Their approach is targeted to constructing a to organize software development efforts in a more ef-
framework for discovering the mechanisms and or- fective, more productive way. But this is not a one-
ganizational processes that shape software evolution shot undertaking. Instead, a model of software evolu-
with a comparative study sample. The generality of tion is likely to be most informing when not only used
the results they derive can thus be assessed in terms to prescribe software development organization, but

of their sample space. also when used to continually measure, tune, and refine
the organization to be more productive, risk-reducing,

[Kelly87] provides an informing comparative anal- and quality driven [Humphrey85, Radice85, Basili87l.
ysis of four methods for the design of real-time soft-
ware systems. Although his investigation does not
compare models of software evolution, his Choosing the one that's right for an individual soft-
framework is suggestive of what might be accom- ware project and organization is the basic concern.
plished through comparative analysis of such At this time, we can make no specific recommen-
models. dation for which model is best in different cir-

Other approaches that report on the comparative cumstances. The choice is therefore open-ended.

analysis of software evolution activities and out- However, we might expect to see the following

comes can be found elsewhere aKling8O, Basili8l, kinds of choices being made with respect to existing

Bomhm8lb f[models: Generally, most software development or-
ganizations are likely to adopt one of the traditional

2. Research problems and opportunities life-cycle models. Then they will act to customize it
to be compatible with other organizational policies,

As should be apparent, most of the alternative procedures, and market conditions. Software re-
models of software evolution are relatively new, and search organizations will more likely adopt an alter-
in need of improvement and empirical grounding. It native model, since they are likely to be interested in
should however also be clear that such matters re- evaluating the potential of emerging software tech-
quire research investigations. Prescriptive models nologies. When development organizations adopt
can be easy to come by, whereas descriptive models software technologies more closely aligned to the a
require systematic research regimens which can be alternative models (e.g., reusable components, rapid
costly. Nonetheless, there are many opportunities to prototyping), they may try to use them either experi-
further develop, combine, or refute any of the alter- mentally, or to shoehorn them into a traditional life-

12 Draft For Public Review SEI-CM-1 0-1.0

Models of Software Evolution: Life Cycle and Process

cycle model, with many evolutionary activities kept evoiution is one who has mastered the range of ma-
informal and undocumented. Alternatively, another terial outlined in this curriculum module. That is, a
strategy to follow is to do what some similar organi- staff member who has only had an introductory or
zation has done, and to use the model they employ, even intermediate level exposure to this material is
Studies published by researchers at IBM and AT&T not likely to perform software life-cycle or process
Bell Laboratories are often influential in this regard modeling competently. Large software development
[Humphrey85, Radice85, Yacobellis84]. organizations with dozens, hundreds, or even

thousands of software developers are likely to rely
2. Customizing your own Model upon one or more staff members with a reasonably

[Basili87] can be recognized as one of the foremost strong background in local software development
advocates for developing a custom life-cycle process practices and experimental research skills. This sug-
model for each project and organization. Empirical gests that such staff are therefore likely to possess
studies of software development seem to indicate the equivalent of a masters or doctoral degree soft-
that life-cycle process modeling will be most effec- ware engineering or experimental computer science.
tive and have the greatest benefit if practiced as a In particular, a strong familiarity with experimental
regular activity. Process metrics and measurements research methods, sampling strategies, questionnaire
need to be regularly applied to capture data on the design, survey analysis, statistical data analysis
effectiveness of current process activities. As sug- packages, and emerging software technologies are
gested above, it seems likely that at this time, the the appropriate prerequisites. Simply put, this is not
conservative strategy will be to adopt a traditional a job for any software engineer, but instead a job for
life-cycle model and then seek to modify or extend it software engineer (or industrial engineer) with ad-
to accommodate new software product or production vanced training and experience in experimental re-
process technologies. However, it seems just as like- search tools and techniques.
ly that software development efforts that adopt soft-
ware product, production process and production
setting concerns into a comprehensive model may
have the greatest potential for realizing substantial Glossary
improvement in software productivity, quality, and
cost reduction [Scacchi86c]. articulation work

3. Using Process Metrics and Empirical a non-deterministic series of actions taken by
Measurements people in response to foul-ups, breakdowns,

One important purpose of building or buying a proc- mistakes, resource bottlenecks, or other un-
ess model is to be able to apply it to current software expected circumstances that cause planned task
development projects in order to improve their chains to disarticulate. Hacking together soft-
productivity, quality, and cost-effectiveness ware kudges in response to system glitches is a
[Humphrey85, Radice85]. The models therefore pro- frequently observed form of articulation work
vide a basis for instrumenting the software process that occurs during software evolution.
in ways that potentially reveal where development
activities are less effective, where resource bot- evolutionary models
tlenecks occur, and where management interventions
or new technologies could have a beneficial impact represent software evolution in terms that focus
[Basili87, Yacobellis84]. [Scacchi86c] go so far as to attention to the mechanisms that give rise to
advocate a radical approach involving the applica- changes made in a system. Such models seek to
tion of knowledge-based technologies for modeling account for how and why software systems
and simulating software product, production proc- emerge the way they do. Systems evolve not so
ess, and production setting interactions based upon much according to prescriptive stages, but rather
empirical data (i.e., knowledge) acquired through in response to the actions people take to make
questionnaire surveys, staff interviews, observations, the system fit their circumstantial needs. Thus,
and online monitoring systems. Such an approach is when circumstances change, people will seek
clearly within the realm of basic research, but per- opportunities to change the system.
haps indicative of the interest in developing high-
potential, customizable models of software evolu-
tion. evolutionist models

represent software evolution in terms that focus
4. Staffing the Life-Cycle Process Modeling attention to the direction of changes made to

Activity systems. Such models seek to explain the logic
Ideally, the staff candidate best equipped to organize of development typically in the form of stages
or analyze an organizational's model of software the follow one another, where each stage is the

SEI-CM-10-1 .0 Draft For Public Review 13

Models of Software Evolution: Life Cycle and Process

precursor for the next one, and ultimately toward
a final state (e.g., classic waterfall life cycle
model).

production lattice
the intersecting network of task chains that col-
lectively denote the structure of software devel-
opment activities.

software evolution
the collection of software life cycle or process
activities that cause systems to be produced and
consumed.

software life cycle
a typical sequence of phased activities that rep-
resent the various stages of engineering through
which software system pass.

software process
the network of object states and transitional
events that represent the production of a soft-
ware system in a form suitable for computational
encoding and processing.

task chain
a planned, possibly iterative, sequence of actions
taken by people in order to transform raw pro-
duction resources into consumable product
resources.

14 Draft For Public Review SEI-CM-1 0-1.0

Models of Software Evolton: Life Cycle and Process

Teaching Considerations

This module collects and organizes a body of knowl-
edge about software evolution for the first time. The
material has not been taught in this form, and there-
fore suggestions for effective teaching have not been
developed. However, prior experience in teaching
part of this material suggests the use of case studies
of large system development projects as an excellent
source material for study and review. For an ad-
vanced level course, a book such as The Soul of a
New Machine by Tracy Kidder is an excellent
choice. For an intermediate level of coverage, indi-
vidual case studies provide suitable source material
that can introduce students to the interrelationship of
software products, production processes, and pro-
duction settings as sources of influence in system
evolution. A subsequent release of this module will
include suggestions from instructors who have
taught the material.

D

SEI-CM-IO0-1.0 Draft For Public Review 15

Models of Software Evolution: Life Cycle and Process

Bibliography

Balzer8l Balzer83b
Balzer, R. "Transformational Implementation: An Balzer, R., T. Cheatham, and C. Green. "Software
Example." IEEE Trans. Software Eng. SE-7, 1 Technology in the 1990's: Using a New Paradigm."
(1981), 3-14. Computer 16, 11 (Nov. 1983), 39-46.

Abstract: A system for mechanically transforming Proposes a radical alternative to traditional ap-
formal program specifications into efficient imple- proaches to software development and evolution
mentations under interactive user control is de- through the use of knowledge-based operational
scribed and illustrated through a detailed example. specification languages and tools. The approach
The potential benefits and problems of this ap- seeks to introduce and rely upon a degree of
proach to software implementation are discussed. automation in software development far beyond

what is available at present However, it is also
Balzer82 clear that the approach is inherently long-term in its

Balzer, R., N. Goldman, and D. Wile. "Operational orientation; thus, it may take a decade or more be-

Specifications as the Basis for Rapid Prototyping." fore it is fully implemented in a form suitable for

ACM Software Engineering Notes 7, 5 (1982), 3-16. large-scale experimentaion.

Among the first papers to assert the desirability of Balzer85
rapidly developing software systems through the Balzer, R. "A 15 Year Perspective on Automatic
use of operational process and database-oriented Programming." IEEE Trans. Software Eng. SE-11,
specifications and supporting environment. Also as- 11 (Nov. 1985), 1257-1267.
serts the importance of being able to specify hence
prototype descriptions of the user and computation- Abstract: Automatic programming consists not only
al environments in which the emerging system is to of an automatic compiler, but also some means of
operate as an equally important component acquiring the high-level specification to be com-

piled, some means of determining that it is the in-

Balzer83a tended specrication, and some (interactive) means

Balzer, R., D. Cohen, M. Feather, N. Goldman of translating this high-level specfication into a

W. Swartout, and D. Wile. "Operational Specifica- lower-level one which can be automatically cor-

tions as the Basis for Specification Validation." In piled.

Theory and Practice of Software Technology, Fer- We have been working on this extended automatic
rani, Bolognani, and Goguen, eds. Amsterdam: programming problem for nearly 15 years, and this
North-Holland, 1983. paper presents our perspective and approach to this

problem and justifies it in terms of our successes
Abstract: This paper describes a set of freedoms and failures. Much of our recent work centers on
which both simplify the task of specfimg systems an operational testbed incorporating usable aspects
and make the resulting specification more com- of this technology. This testbed is being used as a
prehensible. These freedoms eliminate the need, in prototyping vehicle for our own research and will
specrlc areas, to consider: the mechanisms for ac- soon be released to the research community as a
complishing certain capabilities, the careful coor- framework for development and evolution of Com-
dination and integration of separate operations, the mon Lisp systems.
cost of those operations, and other detailed con-
cerns which characterize implementation. Basll175

These freedoms are partitioned into the areas of Basili, V. R., and A. J. Turner. "Iterative Enhance-
efficiency, method, and data, and providing them ment: A Practical Technique for Software
has resulted in a novel formal specification lan- Development." IEEE Trans. Software Eng. SE-1, 4
guage, Gist. The main features of this language are (Dec. 1975), 390-396.
described in terms of the freedoms it affords. An
overview of the language is then presented together Abstract: This paper recommends the "iterative
with an example of its use to specify the behavior of enhancement" technique as a practical means of
a real system. using a top-down, stepwise refinement approach to

software development. This technique begins with a
simple initial implementation of a properly chosen
(skeletal) subproject which is followed by the

16 Draft For Public Review SEI-CM-1 0-1.0

Models of Software Evolution: Life Cycle and Process

gradual enhancement of successive implementations is currently being developed.
in order to build the full implementation. The de-
velopment and quantitative analysis of a production Bauer76
compiler for the language SIMPL-T is used to dem- Bauer, F. L. "Programming as an Evolutionary
onstrate that the application of iterative enhance- Proe. Progrmn g as an E otary
ment to software development is practical and effi- Process." Proc. 2nd. Intern. Conf Software
cient, encourages the generation of an easily Engineering. IEEE Computer Society, Jan. 1976,
modifiable product, and facilitates reliability. 223-234.

Describes one of the first approaches to the devel-
Basl181 opment of a wide-spectrum language for both speci-
Basili, V. R., and R. W. Reiter. "A Controlled Ex- fying and implementing evolving software systems.
periment Quantitatively Comparing Software Devel-
opment Approaches." IEEE Trans. Software Eng. Bendlfallah87
SE-7, 3 (May 1981), 299-320. Bendifallah, S., and W. Scacchi. "Understanding

One of the earliest experimental studies to compare Software Maintenance Work." IEEE Trans. Soft-
the utility and effectiveness of software develop- ware Eng. SE-13, 3 (March 1987), 311-323.
ment techniques available at that time. Abstract: Software maintenance can be success-

fully accomplished if the computing arrangements
BasliI86 of the people doing the maintenance are compatible
Basili, V. R., R. Selby, and D. Hutchens. with their established patterns of work in the set-
"Experimentation in Software Engineering." IEEE ting. To foster and achieve such compatibility re-
Trans. Software Eng. SE-12, 7 (July 1986), 733-743. quires an understanding of the reasons and the cir-

cumstances in which participants carry out mainte-
Presents a survey of the issues, techniques, and nance activities. In particular, it requires an under-
published studies that involve experimental studies standing of how software users and maintainers act
of software development practices. An excellent toward the changing circumstances and unexpected
companion paper to [Curtis8O for those who seek to events in their work situation that give rise to soft-
develop a deeper understanding of the challenges ware system alterations. To contribute to such an
and rigors of experimental research in software en- understanding, we describe a comparative analysis
gineering. of the work involved in maintaining and evolving

text-processing systems in two academic computer

Basi1I87 science organizations. This analysis shows that
how and why software systems are maintained de-

Basili, V. R, and H. D. Rombach. "Tailoring the pends on occupational and workplace contin-
Software Process to Project Goals and gencies, and vice versa.
Environments." Proc. 9th. Intern. Conf. Software
Engineering. IEEE Computer Society, 1987, Benlngton56
345-357. Benington. H. D. "Production of Large Computer

Abstract: This paper presents a methodology for Programs." Annals of the History of Computing 5, 4
improving the software process by tailoring it to the (1983), 350-361. (Original version appeared in 1956.
specific project goals and environment. This im- Also appears in Proc. 9th. Intern. Conf. Software
provement process is aimed at the global software Engineering, 299-3 10).
process model as well as methods and tools sup-
porting that model. The basic idea is to use defect Abstract: This paper is adapted from a presen-
profiles to help characterize the environment and tation at a symposium on advanced programming
evaluate the project goals and the effectiveness of methods for digital computers sponsored by the
methods and tools in a quantitative way. The im- Navy Mathematical Computing Advisory Panel and
provement process is implemented iteratively by set- the Office of Naval Research in Jme 1956. The
ting project improvement goals, characterizing author describes the techniques used to produce the
those goals and the environment, in part, via defect programs for the Semi-Automatic Ground Environ-
profiles in a quantitative way, choosing methods ment (SAGE) system.
and tools fitting those characteristics, evaluating
the actual behavior of the chosen set of methods Blggerstaff84
and tools, and refining the project goals based on Special Issues on Software Reusability.
the evaluation results. All these activities require T. Biggerstaff and A. Peris, eds. IEEE Trans. Soft-

~ analysis of large amounts of data and, therefore,
support by an automated tool. Such a tool - ware Eng. SE-JO, 5 (Sept. 1984).
TAME (Tailoring A Measurement Environment) - This is a special issue of IEEE Trans. Software

SEI-CM-10-1.0 Draft For Public Review 17

Models of Software Evolution: Life Cycle and Process

Engineering that collects 15 or so papers on differ- * Most of the code in a small application
ent approaches to software reuse that originally software product is devoted to
were presented at a workshop on the topic spon- "housekeeping."
sored by IT. The paper presents the experimental data support-

ing these conclusions, and discusses their context
Boehm76 and implications.
Boehm, B. "Software Engineering." IEEE Trans.
Computers C-25, 12 (Dec. 1976), 1226-1241. Boehm84

One of the classic papers in the field of software Boehm, B. W., T. Gray, and T. Seewaldt.
engineering that focuses attention to the primacy of "Prototyping vs. Specifying: A Multi-project
engineering software systems throughout their de- Experiment" Proc. 7th. Intern. Conf. Soft. Engr.
velopment life cycle, rather than just to improved 1984, 473-484.
programming practice. Abstract: In this experiment, seven software teams

developed versions of the same small-size
Boehm8l a (2000-4000 source instruction) application software
Boehm, B. W. Software Engineering Economics. product. Four teams used the Specifying approach.
Englewood Cliffs, N. J.: Prentice-Hall, 1981. Three teams used the Prototyping approach.

Presents an extensive motivation and treatment of The main results of the experiment were:
software development and evolution in terms of e Prototyping yielded products with roughly
costs, quality, and productivity issues. Among the equivalent performance but with about
results, Boehm indicates that personnel/team capa- 40% less code and 45% less effort.
bility and other attributes of a software production o The prototyped products rated somewhat
setting usually have far greater affect on the quality lower on functionality and robustness, but
and cost of software products than do new software higher on case of use and ease of learning.
engineering tools and techniques. It also presents * Specifying produced more coherent de-
an in-depth discussion of the development and de-
tails of the software cost estimation model, signs and software that were easier to inte-
COCOMO, that draws upon the extensive studies grate. e
and analyses that Boehm and associates at TRW The paper presents the experimental data support-
have conducted over the years. ing these and a number of additional conclusions.

Boehm8l b Boehm86
Boehm, B. "An Experiment in Small-Scale Software Boehm, B. W. "A Spiral Model of Software Devel-
Engineering." IEEE Trans. Software Eng. SE-7, 5 opment and Enhancement." ACM Software Engi-
(Sept. 1981), 482-493. neering Notes 11, 4 (1986), 22-42.

Abstract: This paper reports the results of an ex- Presents a new model for modeling the software
periment in applying large-scale software engineer- process that explicitly attempts to address how to
ing procedures to small software projects. Two manage the risks associated with the development
USC student teams developed a small, interactive of different kinds of software systems. The presen-
application software product to the same spec~i(- tation of the model is somewhat obscure; however,
cation, one using Fortran and one using Pascal. its focus on addressing risk as a central component
Several hypotheses were tested, and extensive ex- in determining how to structure the software devel-
perimental data collected. The major conclusions opment process is unique and worth careful ex-
were as follows. amination.

" Large-project software engineering proce-
dures can be cost-effectively tailored to Budde84
small projects. Budde, R., K. Kuhlenkamp, L. Mathiassen, and

" The choice of programming language is H. Zullighoven. Approaches to Prototyping. New
not the dominant factor in small applica- York: Springer-Verlag, 1984.
tion software product development. Presents a collection of papers on software

" Programming is not the dominant activity prototyping originally presented at a conference on
in small software product development. tht topic in Europe in 1984. After [SEN82], the

" The "deadline effect" holds on small soft- most extensive survey of approaches to software de-
ware projects and can be used to help velopment and evolution through the use of
manage software development. prototyping tools and techniques.

18 Draft For Public Review SEI-CM-10-1.0

Models of Software Evolution: Life Cycle and Process

Cheatham86 Dowson86
Cheatham, T. "Supporting the Software Process." Proc. 3rd. Intern. Software Process Workshop,
Proc. 19th. Hawaii Intern. Conf. Systems Sciences., M. Dowson, ed. Los Alamitos, Calif.: IEEE Com-
1986, 814-821. puter Society, 1986.

Describes a segment of the radical approach to auto- Proceedings of the most recent workshop on soft-
mating software development introduced in ware process models. Presents short papers on a
Balzer83b. This segment addresses how to support variety of different approaches to process modeling
development and debugging of software compo- including object-oriented process programming.
nents through use of task-level protocols and associ-
ated tools. Falrley85

Fairley, R. Software Engineering Concepts. New
Curtls87 York: McGraw-Hill, 1985.
Curtis, B., H. Krasner, V. Shen, and N. Iscoe. "On
Building Software Process Models Under the One of the best textbooks on software engieerng
Lamppost." Proc. 9th. Intern. Conf. Software currently available.
Engineering. IEEE Computer Society, April 1987,
96-103. Gassr86

Gasser, L. "The Integration of Computing and
Abstract: Most software process models are based Routine Work." ACM Trans. Office Info. Sys. 4. 3
on the management tracking and control of a proj- (July 1986), 205-225.
ect. The popular alternatives to these models such
as rapid prototyping and program transformation Describes the results of an empirical study of soft-
are built around specific technologies, many of ware evolution practices in a large manufacturing
which are still in their adolescence. Neither of organization. Gasser reports that software systems
these approaches describe the actual processes that regularly fail to be compatible with the instrumental
occur during the development of a software system. work activities they are suppose to support, and that
That is, these models focus on the series of artifacts a variety of forms of "work-arounds" and other ac-
that exist at the end of phases of the process, rather comodations are performed by users and main-
than on the actual processes that are conducted to tainers to deal with such systems. These accomoda-
create the artifacts. We conducted afield study of tions and negotiations therefore play a central role
large system development projects to gather empiri- in shaping the evolution of such systems.
cal information about the communication and tech-
nical decision-making process that underlie the de-
sign of such systems. The findings of this study are Goguen86
reviewed for their implications on modeling the Goguen, J. "Reusing and Interconnecting Software
process of designing large software systems. The Components." Computer 19,2 (Feb. 1986), 16-28.
thesis of the paper is that while there are many foci Abstract: Realizing the considerable economic po-
for process models, the most valuable are those tential of software reuse requires new programming
which capture the processes that control the most environment ideas. This article presents a library
variance in software productivity and quality, interconnection language featuring modest use of

semantics.
Curtls80
Curtis, B. "Measurement and Experimentation in Hekmatpour87
Software Engineering." Proceedings IEEE 68, 9 Hekmatpour, S. "Experience with Evolutionary
(1980), 1144-1157. Prototyping in a Large Software Project." ACM

Provides a survey of basic concerns that should be Software Engineering Notes 12, 1 (1987), 38-41.
addressed in any systematic or experimental study Describes three alternative approaches to evolving
of software development practices. the development of software systems through

Distaso8O
prototyping techniques and tools.

Distaso, J. "Software Management - A Survey of Hoffnage185
Practice in 1980." Proceedings IEEE 68, 9 (1980), Hoffnagel, G. F., and W. Beregi. "Automating the
1103-1119. Software Development Process." IBM Systems

Provides a survey of the general issues of software J. 24, 2 (1985), 102-120.
project management based upon experiences in Describes a complementary approach to (Rad-85]
large projects during the 1970's. that introduces automated mechanisms and tech-

SEI-CM-10-1.0 Draft For Public Review 19

Models of Software Evolution: Life Cycle and Process

niques for-supporting large-scale software produc- Huseth86
tion processes. Huseth, S., and D. Vines. "Describing the Software

Process." Proc. 3rd. Intern. Software Process
Horowltz85 Workshop. IEEE Computer Society, 1986, 33-35.
Horowitz, E., A. Kemper, and B. Narasimhan. "A Briefly describes an approach to the use of object-
Survey of Application Generators." IEEE Software oriented and frame-oriented knowledge specifica-
2, 1 (Jan. 1985),40-54. tion languages in developing operational models of

As the title suggests, this article provides a survey software products and production processes.
of the basic software mechanisms and components
used in many application generators. The presen- Ives84
tation is clear and succinct, and represents one of Ives, B., and G. P. Learmonth. "The Information
the few published descriptions of the increasingly System as a Competitive Weapon." Comm. ACM
important software development technology. 27, 12 (Dec. 1984), 1193-1201.

Hosler61 Abstract: With the help of information system tech-

Hosier, W. A. "Pitfalls and Safeguards in Real-Time nology, a company can become competitive in all
Digital Systems with Emphasis on Programming." phases of its customer relationships. The customer

resource life cycle model makes it possible for such
IRE Trans. Engineering Management EM-8 (June companies to determine not only when opportunities
1961). (Also appears in Proc. 9th. Intern. Conf. Soft- exist for strategic applications, but also what spe-
ware Engineering, 311-327). cific applications should be developed.

Abstract: Real-time digital systems are largely a
technical innovation of the past decade, but they Kedzlerskl84
appear destined to become more wide spread in the Kedzierski, B. I. "Knowledge-Based Project Man-
future. They monitor or control a real physical en- agement and Communication Support in a System
vironment, such as an air-traffic situation, as distin- Development Environment." Proc. 4th. Jerusalem
guished from simulating that environment on an ar- Conf. Info. Techology. , 1984, 444-451.
bitrary time scale. The complexity and rapid vana-
tion of such an environment necessitates use of a Describes the development of a knowledge-based 0
fast and versatile central-control device, a role well approach to representing software development task
suited to digital computers. The usual system will chains and communications between coordinated
include some combination of sensors. communica- development agents. A prototype processing sup-
tion, control, display, and effectors. Although many port environment is described, as is its suggested
parts of such a system pose no novel management use.
problems, their distinguishing feature, the central
digital device, frequently presents unusually strict Kelly87
requirements for speed, capacity, reliability and Kelly
compatibility, together with the need for a carefully Kelly, J. C. "A Comparison of Four Design Methods
designed stored program. These features. partic- for Real-Time Systems." Proc. 9th. Intern. Conf
ularly the last, have implications that are not al- Software Engineering. IEEE Computer Society,
ways foreseen by management. An attempt is made 1987, 238-252.
to point out specific hazards common to most real- Presents an elaborate but practical scheme for x-
time digital systems and to show afew ways of nin- amining and comparing different tools/techniques
imizing the risks associated with them. for designing real-time software systems. Such a

comparative framework and analysis of various
Humphrey85 models of software evolution might be derived from
Humphrey, W. S. "The IBM Large-Systems Soft- this approach. Alternatively, van den Bosch82
ware Development Process: Objectives and presents a different approach to evaluating software
Direction." IBM Systems J. 24, 2 (1985), 76-78. development methodologies (or models) through

The companion pe t the use of a comparative framework.

[Hoffnage185] that introduces and motivates the ap- Kdder8l
proaches to modeling and measuring software pro- Kiddere
duction at IBM with explicit attention to process Kidder, T. The Soul of a New Machine. New York:
organization and management. Atlantic Monthly Press, 1981.

This Pulitzer Prize-winning story describes the de-
velopment life cycle of a new computing system
(hardware and software) by a major computer yen-

20 Draft For Public Review SEI-CM-1 0-1.0

Models of Software Evolution: Life Cycle and Process

dor, together with the dilemmas, opporumites, and they are produced, and the settings where they are
social dynamics that shaped its development, produced and consumed in order to best understand
Strongly recommended as one of the few descrip- how they will evolve.
tions of the real organizational complexities sur-
rounding the development of computing systems. Lehman84a

Lehman, M. M., V. Stenning, and W. Turski.
KIng84 "Another Look at Software Development
King, J. L., and K. K. Kraemer. "Evolution and Or- Methodology." ACM Software Engineering Notes
ganizational Information Systems: An Assessment 9, 2 (April 1984), 21-37.
of Nolan's Stage Model." Comm. ACM 27, 5 (May1984), 466-475. Abstract: Software design -from 'topmost' speci-

fication down to final implementation - is viewed

Abstract: Richard Nolan's stage model is the best as a chain of uniform steps, each step being a trans-
known and most widely cited model of computing formation between two linguistic levels. A canoni-
evolution in organizations. The model's develop- cal form of the step is discussed and it is argued
ment over a decade demonstrates its own evolution that all rational design activities are expressible as
from a simple theory, based on the factoring of a combination of canonical steps. The role of back-
change states indicated by changes in computing tracking in software design is explained and a
budgets, to an elaborate account of the character- mechanism for introducing changes, both in-
istics of six stages of computing growth. An anal- digeneous and exogeneous, is proposed, again en-
ysis of the model's logical and empirical structure tirely by a combination of canonical steps. The
reveals a number of problems in its formulation that main tenet of the 'canonical step approach' is that a
help to account for the fact that its principal tenets design step contains a degree of unconstrained, cre-
have not been independently validated. The model ative invention and a calculable part which is the
is shown to be an "evolutionistic" theory within the actual transformation effected.
theories of evolution in the social sciences, focusing
on assumed directions of growth and an implied end Lehman84b
state toward which growth proceeds, and suffering
from problems inherent in such theories. Further Lehman, M. M. "A Further Model of Coherent Pro-
research based on an "evolutionary" view of com- gramming Processes." Proc. Software Process
puting growth is suggested as a means of improving Workshop. IEEE Computer Society, 1984, 27-33.
theories of computing in organizations. Abstract: Computer applications and the software

that implements them evolve both during initial de-
KIIng80 veloprsent and under subsequent usage. Current
Kling, R., and W. Scacchi. "Computing as Social industrial processes to achieve such evolution are
Action: The Social Dynamics of Computing in Com- ad hoc. The individual activities from which they
plex Organizations." Advances in Computers 19 are constituted do not have a common theoretical
(1980), 249-327. Academic Press, New York. base, are now unified by a single conceptual

framework and so cannot be combined into a
Provides a survey of the organizational dilemmas coherent process. Yet the latter is essential for the
that can occur during the development and use of design of integrated programming support
system embedded in complex organizational set- environments and it is widely recognized that such
tings. Uses a case study of the life cycle of one support is necessary for the creation and evolution
system to help articulate six different analytical (maintenance) of correct, reliable, cost-effective
perspectives for understanding these dilemmas and programs in a manner that is responsive to societal
their interaction, needs.

Coherent processes, that facilitate evoluiion of a
KIIng82 program over its lifetime, cannot be expected to
Kling, R., and W. Scacchi. "The Web of Comput- evolve by juxtaposition of established practices, ex-
ing: Computer Technology as Social Organization." cept over many generations of process instances.
Advances in Computers 21 (1982), 1-90. Academic The rate at which computerization is penetrating all
Press, New York. aspects of societal activity and the reliance this im-

plies on correct definition and operation of software
Asserts the thesis that computing systems and the systems, suggest that mankind cannot wait for the
ways how they are developed and used are in- 'natural' evolution of responsive and reliable proc-
separably bound to the settings where they are pro- esses. Their design and implementation is a matter
duced and consumed. This work employs case of some urgency.
studies to assert the primacy of understanding the This paper outlines the first steps in the design of
interrelationship between software systems, how coherent programming processes by decomposition

SEI-CM- 10-1.0 Draft For Public Review 21

Models of Software Evolution: Life Cycle and Process

and successive refinement of a model of program ware process. His critique cites the inherent openess
development and evolution based on a view of pro- of software development practices and the limits of
gramming as a transformation process, being able to characterize such practices with al-

gorithinc languages.

Lehman85
Lehman, M. M., and L. Belady. Program Evolution: Llker86
Processes of Software Change. New York: Aca- Liker, J. K, and W. M. Hancock. "Organizational
demic Press, 1985. Systems Barriers to Engineering Effectiveness."

IEEE Trans. Engineering Management EM-33, 2
Presents a collection of previously published papers (1986), 82-9 1.

that identify and reiterate the "taws" of large pro-

gram evolution as discovered through empirical in- Identifies a number of organizational conditions that
vestigations at IBM and elsewhere over the preced- inhibit or reduce the productivity and effectiveness
ing 10 year period. Unfortunately, many of the of engineers working in large organizational set-
papers state the same data and results, and therefore tings. Although not specific to software engineer-
limit the impact of its contribution. ing, its analysis and findings are easily applied to

this domain.
Lehman86a
Lehman, M. M. "Modes of Evolution." Proc. 3rd. MIL-STD-2167
Intern. Software Process Workshop. IEEE Comput- Dept. of Defense. DRAFT Military Standard: De-
er Society, 1986,29-32. fense System Software Development. DOD-

Abstract: Computer applications inevitably evolve. STD-2167A.
The very activity of designing and creating a The current draft of the standard guidelines for de-
mechanistic system to automate some human acti- veloping and documenting software systems by
vity leads to a change of perspective and an in- contractors working for the U.S. Department of De-
crease of insight into the problems and approaches fense.
to its solution. Installation and operation of the
completed system only increases and broadens this Narayanaswamy8
effect. The pressures that arise from the changed NarayanaswamyK"
perceptions, newly recognized needs and opportu- Narayanaswamy, K., and W. Scacchi. "A Database
nities can be controlled but not suppressed. They Foundation to Support Software System Evolution."
lead inevitably to demand and, hence, authorization J. Sys. and Software 7, 1 (March 1987), 37-49.
and implementation of system change. And the key Abstract: Most software engineering researchers
to system functional and quality change is primarily focus on supporting the maintenance of large-scale
through modification of its software. Hence the un- software systems to tackle problems such as manag-
ending maintenance burden, the continuing process ing source code alterations or automating the
of change and evolution of programs. reconstruction and release of incrementally altered

systems from descriptions of their configurations.
Lehman86b In this paper, we take the view that information per-
Lehman, M. M. "Approach to a Disciplined Devel- taining to the configurations of a system constitute
opment Process: The ISTAR Integrated Project a basic source of knowledge about the system's de-
Support Environmen" ACM Software Engineering sign and how its component modules fit together.

Notes 11, 4 (1986), 49-60. This knowledge is articulated by the use of a special
language called NuMIL, which captures the inter-

As part of the papers presented at the second work- dependencies between the interfaces of components
shop on software process, Lehman describes the de- within a system. We then use a relational database
velopment of an approach and an environment that system to store the descriptions. This enables man-
support the production of large software systems by agement of the description of large software config-
teams of "sub-contractors" working on the projecL urations in an elegant manner, and it facilitates the

interactive use of the descriptions in analyzing in-

Lehman87 cremental system alterations and in enhancing the

Lehman, M. M. "Process Models, Process Program- maintainer's uaderstanding of a system.

ming, Programming Support." Proc. 9th. Intern.
Conf. Software Engineering. IEEE Computer Soci- Neighbors84
ety, April 1987, 14-16. Neighbors, J. "The Draco Approach to Constructing ,

Software from Reusable Components." IEEE W
An invited paper that responds to and debates the Trans. Software Eng. SE-lO, 5 (Sept. 1984),
proposal by Osterweil87 for programming the soft- Trans.

22 Draft For Public Review SEI-CM-1 0-1.0

Models of Software Evolution: Life Cycle and Process

Abstract: This paper discusses an approach called vironment supporting the (semi-)automated tans-
Draco to the construction of software systems from formation of software specifications into an imple-
reusable software parts. In particular we are con- mentation language. The techniques and
cerned with the reuse of analysis and design infor- mechanisms employed have since migrated into a
mation in addition to programming language code. commercial product called REFINE.
The goal of the work on Draco has been to increase
increase the productivity of software specialists in Potts84
the construction of similar systems. The particular
approach we have taken is to organize reusable Proc. Software Process Workshop, C. Potts, ed. Los
software components by problem area or domain. Alamitos, CA: IEEE Computer Society, 1984.
Statements of programs in these specialized Proceedings of the first workshop on software proc-
domains are then optimized by source-to-source ess modeling which brought attention to the inade-
program transformations and refined into other quacies of traditional life cycle models as well as
domains. The problems of maintaining the suggesting some alternative ways for describing
representational consistency of the developing pro- software evolution.
gram and producing efficient practical programs
are discussed. Some examples from a prototypesystem are also given. Radlce85

Radice, R. A., N. K. Roth, A. L. O'Hara, Jr., and

Nolan73 W. A. Ciarfella. "A Programming Process

Nolan, R. "Managing the Computer Resource: A Architecture." IBM Systems J. 24, 2 (1985), 79-90.
Stage Hypothesis." Comm. ACM 16, 7 (July 1973), Describes experiences with the development and
39-405. practice of an approach tw engineering large soft-

Abstract: Based on the study of expenditures for ware systems at IBM. n2 u PPA is a framework forabtrcsin, B ae te st oxpituesis fr describing the required activities for an operationaldata processing, a descriptive stage hypothesis is process for developing software systems. The ar-
presented. It is suggested that the planning, organ- chitectfre includes process management tasks,
izing, and controlling activities associated with chiectu r n l sis an gement taskh,
managing the computer resource will change in mechansms for analysis and development of the
character over a period of time, and will evolve in process, and product quality reviews. It also re-
patterns roughly correlated to four stages of the quires explicit entry criteria, validation, and exit cri-
computer budget: Stage I (computer acquisition), teria for each task in the software production proc-
Stage II (intense system development), Stage Ii ess.
(proliferation of controls), and Stave IV
(userlservice orientation). Each stage is described Redwine85
and related to individual tasks for managing the Redwine, S., and W. Riddle. "Software Technology
computer resource. Maturation." Proc. 8th. Intern. Conf. Software

Engineering. IEEE Computer Society, 1985,
Osterwel87 189-200.
Osterweil, L. "Software Processes are Software Abstract: We have reviewed the growth and
Too." Proc. 9th. Intern. Conf. Software propagation of a variety of software technologies in
Engineering. IEEE COmputer Society, April 1987, an attempt to discover natural characteristics of the
2-13. process as well as principles and techniques useful

developing op- in transitioning modern software technology intoDescribes an innovative approach to deeoigo-widespread use. What we have looked at is the
erational programs that characterize how software t e l urat pe he roess by
development activities should occur and how tools technology istfirstoconcived, the n

can e usd t suportthes acivites.which a piece of technology is first conceived, then
can be used to support these activities, shaped into something usable, and finally

"marketed" to the point that it is found in the reper-
PolaR86 toire of a majority of professionals.
Polak, W. "Framework for a Knowledge-Based Pro- A major interest is the time required for technology
gramming Environment." Workshop on Advanced maturation - and our conclusion is that technol-
Programming Environments. Springer-Verlag, ogy maturation generally takes much longer than
1986. popularly thought, especially for major technology

Describes another segment of the knowledge-based areas. But our prime interest is in determining
a twhat actions, if any can accelerate the maturation

originally presented in Balzer83b. This segment of technology, in particular that part of maturation
focuisl pesentntoapedifiatonlanguae Ts en- that has to do with transitioning the technology into
focuses attention to a specification language and en- widespread use. Our observations concerning mat-

SEI-CM-10-1.0 Draft For Public Review 23

Models of Software Evolution: Life Cycle and Process

uration facilitators and inhibitors are the major requires people who can organize the process for
subject of this paper. developing and evolving software products with lo-

cally available resources. Managing software engi-

Royce7O neering projects is as much a job of social inter-

Royce, W. W. "Managing the Development of action as it is one of technical direction. This paper
examines the social arrangements that a software

Large Software Systems." Proc. 9th. Intern. Conf. manager must deal with in developing and using
Software Engineering. IEEE Computer Society, new computing systems, evaluating the appropriate-
1987, 328-338. Originally published in Proc. WES- ness of software engineering tools or techniques,
CON, 1970. directing the evolution of a system through its life

first article to explicate t oft- cycle, organizing and staffing software engineering
Often cited as th s e o eplaicwaterft- projects, and assessing the distributed costs and
ware life cycle through use of the classic waterfall benefits of local software engineering practices.chart. However, it wasn't until Boehm76 that the The purpose is to underscore the role of social

central focus of software engineering was explicitly analysis of software engineering practices as a cor-

linked to the tools and techniques required to ade- nrso e erstand rig haties toar-

quately support software life cycle engineering. tively manage software projects.

Sathl85 Scacchl86a
Sathi, A., M. S. Fox, and M. Greenberg. Scacchi, W. "Shaping Software Behemoths." UNIX
"Representation of Activity Knowledge for Project Review 4, 10 (Oct. 1986), 46-55.
Management" IEEE Trans. Pau. Anal. and Mach.
Intell. PAMI-7, 5 (1985), 531-552. Describes in an accessible manner how to support

the life cycle engineering of large software systems
Describes a schematic language for representing through the use of tools available in the Unix
knowledge about complex production processes. operating system environment.
Use of such a knowledge representation language
and its associates intelligent system (shell) environ- Scacchi86b
ment provides an advanced basis for developing
knowledge-based models of software products, pro- Scacchi, W. and J. Babcock. Understanding Soft-
duction processes and their interactions. ware Technology Transfer. Internal report, Software

Technology Program, Microelectronics and Comput-

Sath186 er Technology Corp., Austin, Texas. (Submitted for

Sathi, A., T. Morton, and S. Roth. "Callisto: An publication).

Intelligent Project Management System." Al This report surveys empirical studies of software
Magazine 7, 5 (1986), 34-52. technology transfer and transitions experiences and

proposes a framework for understanding how differ-The follow-on report to Sathi85 which describes the ent software technologies should be developed andcontinuing development of a knowledge-based ap packages to facilitate their transfer to other settings.
proach to representing and processing complex de-

velopment projects, with emphasis on emerging is-sues in knowledge representation. Scacchi86c
Scacchi, W., and C. M. K. Kintala. Understanding

Scacch184 Software Productivity. Internal report, Advanced

Scacchi, W. "Managing Software Engineering Proj- Software Concepts Dept., AT&T Bell Laboratories,

ects: A Social Analysis." IEEE Trans. Software Murray Hill, N. J. (Submitted for publication).

Eng. SE-JO, 1 (Jan. 1984), 49-59. This report surveys empirical studies of software

Abstract: Managing software engineering projects productivity measurement. It reports that there are
requires an ability to comprehend and balance the still no adequate quantitative measures or devices

technological. economic, and social bases through that can reliably and accurately measure software

which large software systems are developed. It re- productivity. As an alternative, a radical approach

quires people who can formulate strategies for de- to understanding what affects software productivity
veloping systems in the presence of ill-defined re- is proposed that utilizes a knowledge-based ap-
quirements, new computing technologies, and proach to modeling and simulating software prod-
recurring dilemmas with exsting computing ar- ucts, production processes, and production settings
rangements. This necessarily assumes skill in ac- as well as their interactions.

quiring adequate computing resources, controlling
projects, coordinating development schedules, and
employing and directing competent staff. It also

24 Draft For Public Review SEI-CM-10-1.0

Models of Software Evolution: Life Cycle and Process

Scacchl87 system development process, and presents a numberS Scacchi, W. "The System Factory Approach to Soft- of models both of systems and of system devel-
ware Engineering Education." In Educational Is- opment. It also presents one of the few descriptions

sues in Software Engineering, R. Fairley and of the incremental release model of software devel-

P. Freeman, eds. New York: Springer-Verlag, 1987. opment practiced by many large system develop-

(To appear). ment organizations.

This chapter describes an approach to engineering vandenBosch82
large software systems in a graduate-level software van den Bosch, F., J. Ellis, P. Freeman, L. Johnson,
engineering project course. The report describes C, McClure D. Robinson, W. Scacchi, B. Scheft,
some of the software engineering tools, techniques, A. van Staa, and L. Tripp. "Evaluating the Imple-
and project management strategies that have been mentation of Software Development Life Cycle
developed over the history of the SF project, as well Meth oion of Software E nie Noe
as some experiences in transferring these technol- Methodologies." ACM Software Engineering Notes
ogies to other organizational settings. 7, 1 (Jan. 1982), 45-61.

Abstract: The cost of developing, maintaining and
SEN82 enhancing software is a major cost factor in many
Special Issue on Rapid Prototyping. ACM Software projects. The inability to understand, on a quanti-
Engineering Notes 7, 5 (Dec. 1982). tative basis, what factors affect this process severely

limits the ability of an organization to make
Presents the first collection of full papers on the changes that will have a predictable affect on im-
subject of rapid prototyping of software systems proving quality and productivity of software prod-
originally appearing at a small workshop on the ucts.
same topic. Most of the techniques for rapid In the past decade most software organizations
prototyping that have appeared in subsequent litera- have developed a life cycle approach for their or-
ture and research investigations further explore ganization. The approaches which describe the ac-
work appearing in this collection. dons and decisions of the life cycle phases have

been formalized as a methodology. Little has been
- Thayer8l done, however, to define a basis for comparison of
. Thayer, R., A. Pyster, and R. Wood. "Major Issues these methodologies or even portions of these meth-

in Software Engineering Project Management." odologies. Therefore, there is little data to guide
IEEE Trans. Software Eng. SE-7, 4 (July 1981). management to direct its organization on what

methodologies should be used in the life cycle
Abstract: Software engineering project manage- phases in order to enhance performance in terms of
ment (SEPM) has been the focus of much recent cost, schedule, and technical quality.
attention because of the enormous penalties in-cureduiong seoftare elompment i mine- This is a proposal for a project to develop a basisnance resulting from poor management. To ate for a standard quantitative and qualitative analysisthere has been no comprehensive study performed of a software life cycle methodology. The goals ofto determine the most sigifi cant problems of this project are to define a process by which anSEPM, their relative importance, or the research organization can monitor its life cycle and developdirections necessary to solve them. We conducted a this process to produce better quality softwaremajor survey of individuals from all areas of the product at a cheaper and more competitive price.o urvield o dineduals tm gal coesus ofIn addition, this project will provide a means bycomputer field to determine the general consensus wih mto ooisc nb o p rd ars r
on SEPM problems. Twenty hypothesized problems which methodologies can be compared across or-
were submitted to several hundred individuals for ganizations or phases of the software developmenttheir opinions. The 294 respondents validated most life cycle. This would be invaluable to large corpo-

thei opnios. he 24 rspodens vaidaed ostrations that have many different software develop-
of these propositions. None of the propositions was y
rejected by the respondents as unimportant. A num- ment organizations and large agencies who have

ber of research directions were indicated by the their own internal software development agencies
respondents which, iffollowed, the respondents be- as well as funding other organizations for large

lieved would lead to solutions for these problems. software development projects. This project would
provide data that would enable these corporations
to specify methodologies to the suborganizations in

Tully84 order to have a positive control on the quality and
Tully, C. "Software Development Models." Proc. price of the software product produced.
Software Process Workshop. IEEE Computer Soci- This project consists of two phases. Both phases

W ety, 1984, 37-44. will be discussed by this proposal but the actual
This paper discusses information systems, and the funding request will only cover the pilot phase. The

SEI-CM-10-1.0 Draft For Public Review 25

Models of Software Evolution: Life Cycle and Process

pilot phase is a one-year $100,000 project to vail- ment as the basis for studying and improving large-
date the case study approach to this problem and to scale industrial software development practices.
redefine the type of questions and methods by which
to conduct the interviews and the case study anal- Zave84
ysis. This pilot project will be followed by a three zave, P. "The Operational Versus the Conventional
year project that will begin by studying approxi- Aa ch to Softa Dersoset." Comm.oA
mately seven projects and will be the start of estab- Approach to Software Development." Comm. ACM
lishing the data base to compare methodologies 27 (Feb. 1984), 104-118.
across organizations and phases of a software life Abstract: The conventional approach to software
cycle, development is being challenged by new ideas,

many of which can be organized into an alternative
Wlleden86 decision structure called the "operational" ap-
Intern. Workshop on Software Process and Software proach. The operational approach is explained and
Environments. J. Wileden and M. Dowson, eds. compared to the conventional one.
ACM Software Engineering Notes 11, 4 (1986).

Proceedings of the second workshop on software
process modeling. Includes short papers that con-
tinue debates over the appropriateness of alternative
models of software evolution started in the first
software process workshop.

Wirth7l
Wirth, N. "Program Development by Stepwise
Refinement." Comm. ACM 14, 4 (April 1971),
221-227.

Abstract: The creative activity of programming -
to be distinguished from coding - is usually taught
by examples serving to exhibit certain techniques.
It is here considered as a sequence of design deci-
sions concerning the decomposition of tasks into
subtasks and of data into data structures. The proc-
ess of successive refinement of specifications is il-
lustrated by a short but nontrivial example, from
which a number of conclusions are drawn regard-
ing the art and the instruction of programming.

Wlseman85
Wiseman, C. Strategy and Computers: Information
Systems as Competitive Weapons. New York: Dow
Jones Irwin, 1985.

An elaboration of some of the ideas presented in
Ives84 that focus attention to viewing the devel-
op.n.nt and evolution of software systems as corpo-
rate resources whose capabilities create or inhibit
competitive opportunities in the marketplace.

YacobelIls84
Yacobellis, R. H. "Software and Development Proc-
ess Quality Metrics." Proc. COMPSAC 84. IEEE
Computer Society, 1984. 262-269.

Describes some early experiments at AT&T Bell
Laboratories to monitor and measure software pro-
duction processes and products. Together with the
studies at IBM (cf. Humphrey85), this suggests the
growing importance of software process measure-

26 Draft For Public Review SEI-CM-1 0-1.0

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
is REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLA SSI F IED NONE
2.. SECURITY CLASSIFICATION AUTHORITY 3. DISTARIBUTION/AVAILABILITY OF REPORT

N /A APPROVED FOR PUBLIC RELEASE
2b. OECLASSIF ICATIONIDOVNGRAOING SCHEDULE DISTRIBUTION UNLIMITED

N/A__ _

PERFORMAING ORGANIZATION REPORT NQMBER(S) S. MONITORING ORGANIZATION REPORT NUMABER(IS)

SEI-CM-lO-1 .0

6&. NAME OF PERFORMING ORGANIZATION 16b. OFFICE SYMBO8L 7a. NAME OF MONITORING ORGANIZATION
I (Ifcppoico ble)SOFTWARE ENGINEERING INST. E SEI JOINT PROGRAM OFFICE

6r_. ADDRESS (City. State and ZIP Coda$l 7b. ADDRESS (City. Stale Ad ZIP Code)

CARNEGIE MELLON UNIVERSITY ESD/AVS
PITTSBURGH, PA 15213 H.ANSCOM AIR FORCE BASE, MA 01731

84. NAME OF FUNOING/SPONSORING 8~b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I(if applicable)

SEI JOINT PROGRAM OFFICE j ESD/ AVS F1962890CO003

Sc. ADDRESS (City. State and ZIP Cod-el 10 SOURCE OF FUNDING NOS.
CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNI1T
PITTSBURGH, PA 15213 ELE ME NT NO. NO. No. NO.

K6372 N/A N/A N/A
11. TITLE (include Security CSi~ficationt

-Models of Software Evolutin Lieel-p i Prnctc _________________

12, PERSONAL AUTHORSI

Walt Scacchi, University of Southern Califn ia
13& TYPE OF REPORT 13tL TIM6E COVERED, li. DATE OF REPORT (Y.. Mo.. Day) IS. PAGE COUNT

FINLF FROM _____To____ October 1987 26
IS. SUPPLEMENTARY NOTATION

17, COSATI CODES It SUBJECT TERMS (Con tue on reverse If Aece8J4r and identify by block nrnmberi

PIELO -GROUP Sue GlM. software process process model
software life cycle
life cycle model

It. ABSTRACT (Conti optO ,VvIeI1 of nEce ry and identify by block nunyb4ee

This module presents an introduction to models of software system evolution and their
role in structuring software development. It includes a review of traditional software
life-cycle models as well as software process models that have been recently proposed.
It identifies three kinds of alternative models of software evolution that focus
attention to either the products, production processes, or production settings as the
major source of influence. It examines how different software engineering tools and
techniques can support life-cycle or process approaches. It also identifies techniques
for evaluating the practical utility of a given model of software evolution for
development projects in different kinds of organizational settings.

20. ODISTRIBUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIF ICATION

UINCLASSIFIED/UNLIMITEO, J SAME AS RPT. 0 OTIC USERS IN UNCLASSIFIED, UNLIMITED DISTRIBUTION
22a. NAME OF RESPONSIBLE INDIVIDUAL 22111 TELEPHONE NUMBER 22C. OFFICE SYMBOL

JOHN S. HERMAN, Capt, USAF finclude A rv Code) S/V

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNLIMITEJ,_ UNCLASSIFIEDL

30Wd SIHIkg dO ~IjV3Ijg5$VI3 AlIufl3S

The Software Engineering Institute (SEI) is a federally funded research and development center. operated by Carnegie
Melon University under contract with the United States Department of Defense.

The SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineering
education. A curriculum module (CM) identifies and outlines the content of a specific topic area. and is intended to be
used by an instructor in designing a course. A support materials package (SM) contains materials related to a module
that may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEI educational materials are being made available to educators throughout the academic. Industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEt, by Carnegie Melon University, or by the United States government

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials is
granted. without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that al copies and derivative works cite the original document by name. author's name, and document
number and give notice that the copying is by permission of Carnegie Melon University.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project. Software Engineering Institute, Carnegie Melon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent to education@sei.cmu.edu on the Internet.

Curriculum Moduiles (* Support Materials available) Educational Materials

CM-I [supereded byCM- 191 EM-I Software Mainwwnce Exercises for aSoftware
CM-2 Itroduction so Software Design ErignflWUng Prolect Courses
CM-a The Software Technical Review Process* EM-2 APSE Interactive Monitor: An Artifact for Software
CM-4 Software Cofration magmer Engineering Education
CM-S kInormaion Proloction EM-S Reading Computer Progrems: Inswudos Guide and
CL44 Softwar Set"~ Exercises
CM- Assuranoe of Software Ouality
CM4 Formal Specilication of Software
CM4 Unit Teuing and Anaysi
CM-10 Models of Software Evolution: Lif Cycle and Process
CM-I1 Software Specifians: A Framework
CM-12 Software Metrics
CM-3IS hoduction to Software Verification and Validation
CM-14 Intelecual Ptropry Protection for Software
CM-li Software Development and Licensing Contacts
CM-to Software Development Using VDM
CM-I? User Interface Development
CM-la fsuperseded by CM-21
CM-19 Software Requiements
CM-20 Formal Verification of Programs
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Tinme Systems'
CM-23 Technical Writing for Software Engineers
CM-24 Concepts of Concurret Programming
CM-25 Laag and System Support for Concurrent

ProgrammiW
CM-26 Understending Program Dependencies

